
Lecture 02: Mathematical Basics (Inequalities)
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Arithmetic Mean - Geometric Mean Inequality

Theorem (Basic AM-GM)

For a, b > 0, we have
a + b

2
>
√
ab

And equality holds if and only if a = b.

Proof.

a + b

2
>
√
ab ⇐⇒

(√
a−
√
b
)2

> 0

The second statement is true for all reals. And, equality holds if
and only if a = b.
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Geometric Mean - Harmonic Mean Inequality

Theorem (Basic GM-HM)

For a, b > 0, we have

√
ab >

(
1
a + 1

b

2

)−1

And equality holds if and only if a = b.

Think: Proof? (it is a consequence of the Basic AM-GM Inequality)
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Towards Generalizing AM-GM Inequality

First step is to note that

∑n
i=1 ai
n

>

 n∏
i=1

ai

1/n

This can be proven by induction on n and using the Basic AM-GM
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Generalizing AM-GM Inequality

Theorem ((Slight) Generalization of AM-GM)

For α1, . . . , αn ∈ Q+ such that
∑n

i=1 αi = 1 and a1, . . . , an > 0,
we have

n∑
i=1

αiai >
n∏

i=1

aαi
i

And, equality holds if and only if a1 = · · · = an.

Think: Prove using Basic AM-GM. Let αi = pi/qi where pi and qi
are relatively prime integers. Let N be the L.C.M. of {q1, . . . , qn}
Consider (pi/qi )N copies of ai , for i ∈ [n] and apply AM-GM on
the N numbers
Think: Generalize GM-HM analogously
Further Generalization: Generalization to αi ∈ R will be done later
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Jensen’s Inequality

Theorem (Jensen’s Inequality)

Let f be a convex downward function in the range R . Let X be a
probability distribution over x1, . . . , xn ∈ R . We have

E
[
f (X)

]
> f

(
E [X]

)
Equality holds if and only if all xi are identical for i such that
P [X = i ] > 0.

Clarification: “Convex Downward” function is a function that looks
like the function f (x) = x2 and does not look like the function
f (x) =

√
x

Proof Intuition: Use induction on n. Base case of n = 2 is proven
using: “the chord between two points lies above the function
between the two points.”
Think: Analogous statement for convex upwards function
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Intuition

Convex Downward f (x)

f (x1)

f (x2)

f ( 1
2x1 + 1

2x2)

f (x1)+f (x2)
2

x1 x21
2x1 + 1

2x2

Jensen’s Inequality says that f (x1)+f (x2)
2 is higher than f (1

2x1 + 1
2x2)
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Application: AM-GM from Jensen’s Inequality

Let f (x) = log x , for x > 0
Note that f (x) is “convex upwards” (i.e., it looks like

√
x)

Let X be the random variable over [n] that outputs i with
probability αi

Let xi = ai for i ∈ [n]

By Jensen’s Inequality we have E
[
f (X)

]
6 f

(
E [X]

)
This equivalent to

∑
i∈[n]

αi log xi 6 log

∑
i∈[n]

αixi


Exponentiating both sides, we get the AM-GM inequality:∏

i∈[n] x
αi
i 6

∑
i∈[n] αixi
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Generalized AM-GM

Theorem (Generalized AM-GM)

For α1, . . . , αn ∈ R+ such that
∑n

i=1 αi = 1 and a1, . . . , an > 0,
we have

n∑
i=1

αiai >
n∏

i=1

aαi
i

And, equality holds if and only if a1 = · · · = an.
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Cauchy–Schwarz Inequality

Theorem (Cauchy–Schwarz Inequality)

Let a1, . . . , an, b1, . . . , bn > 0. Then the following holds

n∑
i=1

aibi 6

 n∑
i=1

a2
i

1/2 n∑
i=1

b2
i

1/2

Equality holds if and only if ai/bi is a constant for all i ∈ [n].

Proof Outline:
Prove the theorem for n = 2 using AM-GM inequality
Prove for n > 2 using induction
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Hölder’s inequality

Theorem (Hölder’s inequality)

Let a1, . . . , an, b1, . . . , bn > 0. Let p, q > 0 such that 1
p + 1

q = 1.
Then the following holds

n∑
i=1

aibi 6

 n∑
i=1

api

1/p n∑
i=1

bqi

1/q

Equality holds if and only if api /b
q
i is a constant for all i ∈ [n].

Proof Outline:
Assume the inequality holds for n = 2
Use induction to extend the inequality to extend to n > 2
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Base Case of n = 2 I

In this section we prove the full Hölder’s inequality in one-shot. The
case of n = 2 is just a restriction of the analysis below to n = 2.

Note that p, q > 0 such that 1
p + 1

q = 1 implies that p, q > 1

Consider the function f (x) = xp

For p > 1, this function is convex downwards

Let xi = ai/b
q/p
i

Let αi = Λ · b
1+ q

p

i , where Λ is the normalizing constant such
that

∑
i∈[n] αi = 1

By Jensen’s Inequality on f (x) = xp we have:

∑
i∈[n]

αix
p
i >

∑
i∈[n]

αixi

p
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Base Case of n = 2 II

Let be first find what is the value of Λ.∑
k∈[n] αk =

∑
k∈[n] Λ · b

1+ q
p

k = 1

Note that 1
p + 1

q = 1. Multiplying both sides by q, we get
q
p + 1 = q

Now, we can substitute q
p + 1 = q to get∑

k∈[n]

αk = Λ
∑
k∈[n]

bqk = 1

This implies that
Λ = 1/

∑
k∈[n]

bqk
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Base Case of n = 2 III
Now, we can conclude that

αixi =
aibi∑
k∈[n] b

q
k

, and

αix
p
i = Λ · b

1+ q
p

i ·
api
bqi

=
api∑

k∈[n] b
q
k

Using the fact
q

p
+ 1 = q

Now, let us substitute these values to simplify the equation we had
obtained by applying the Jensen’s Inequality.

∑
i∈[n]

αix
p
i >

∑
i∈[n]

αixi

p

⇐⇒
∑
i∈[n]

api∑
k∈[n] b

q
k

>

∑
i∈[n]

aibi∑
k∈[n] b

q
k

p

We continue this simplification in the next page
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Base Case of n = 2 IV

∑
i∈[n]

api∑
k∈[n] b

q
k

>

∑
i∈[n]

aibi∑
k∈[n] b

q
k

p

⇐⇒

(
api∑

k∈[n] b
q
k

)1/p

>
∑
i∈[n]

aibi∑
k∈[n] b

q
k

⇐⇒

∑
k∈[n]

bqi

1− 1
p
∑

i∈[n]

api

1/p

>
∑
i∈[n]

aibi

⇐⇒

∑
k∈[n]

bqi

1/q∑
i∈[n]

api

1/p

>
∑
i∈[n]

aibi ∵ 1− 1
p

=
1
q

This completes the proof of the Höder’s Inequality
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Taylor and Maclaurin Series

Let f be an infinitely differentiable function
f (n)(x) represents dnf

dxn (x). For n = 0, f (n)(x) represents f (x)

Taylor Series of f around x0 is given by

f (x) =
∑
n>0

f (n)(x0)

n!
(x − x0)n

Maclaurin Series of f is the Taylor series with x0 = 0
Define the truncation of the Taylor series of f up to N terms
as follows

Tf ,N,x0(x) :=
N∑

n=0

f (n)(x0)

n!
(x − x0)n

The remainder function is defined as follows

Rf ,N,x0(x) := f (x)− Tf ,N,x0(x)
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Lagrange Form

Theorem (The Remainder Theorem)

Suppose f is N + 1 differentiable function. There exists c between
x0 and x such that

Rf ,N,x0 =
f (N+1)(c)

(N + 1)!
(x − x0)N+1

This theorem bounds the error between f (x) and the truncation
Tf ,N,x0(x)
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Application: Bounding exp(−x)

Let f (x) = exp(−x)

Note that f (n)(x) = (−1)n exp(−x)

Note that the Taylor series of f (x) is

f (x) = exp(−x) = 1− x +
x2

2
− x3

6
+· · ·

Note that Tf ,1,0(x) = 1− x and Tf ,2,0 = 1− x + x2

2

By applying the remainder theorem, we get

exp(−x)− (1− x) = Rf ,1,0 =
exp(−c)

2!
x2 > 0

exp(−x)− (1− x +
x2

2
) = Rf ,2,0 =

− exp(−c ′)
3!

x3 6 0

This implies that 1− x 6 exp(−x) 6 1− x + x2/2
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Plots

exp(−x)

1− x

1− x + x2/2
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